

Does the method of barley grain processing affect performance of lactating cows and risk for ruminal acidosis?

Beverly Lynch, G.O. Ribeiro, T. Mutsvangwa, and G.B. Penner

Barley grain characteristics

- Barley starch is protected by the hull and pericarp
- Once exposed by processing, the starchy endosperm is rapidly digested

Source: AB Canola, AG Value, AB Agric

Ensuring adequate but not excessive processing

- Inadequate processing leads inadequate starch utilization
- Over-processing may increase risk for ruminal acidosis

Methods of processing

- Dry rolling
- Grinding (hammer mill or disc mill)
- High-moisture barley

High moisture processing

- Advantages
 - Less production of fine particles / dust
 - Less wear on equipment
- Disadvantages
 - Stability of the product
 - Used immediately or ensiled
 - Processing throughput is reduced
 - Must have scrapers on rollers

Research question

- Does the method of barley grain processing and severity of processing affect feed intake, ruminal fermentation, and milk and milk component yields?
- Eight ruminally cannulated cows ($138 \pm 41 \text{ DIM}$)
- Treatments
 - Dry rolled barley DR
 - Ground barley (hammer mill with a 4-mm screen) HM
 - Reconstituted high moisture barley coarsely rolled RC
 - Reconstituted high moisture barley finely rolled RF

Dietary treatments

RC

17.1 17.1

27.9 27.8

25.9 25.5

3.9 4.0

RF

Ingredient, % DM	DR	HM	RC	RF	Chemical composition, % DM	DR	HM
Barley silage	46.4	46.4	46.4	46.4	CP	16.9	16.9
Barley grain	7.8	7.8	7.8	7.8	NDF	28.6	28.7
DR	31.8	-	-	-	Starch	25.5	25.4
НМ	-	31.8	-	-	Ether extract	3.9	3.9
RC	-	-	31.8	-			
RF	-	-	-	31.8			
Protein mix	9.6	9.6	9.6	9.6			
Mineral and vitamin	3.2	3.2	3.2	3.2			
Palmitic acid	1.3	1.3	1.3	1.3			

Processing did not affect DMI or rumen pH

Starch digestibility was not affected and very high: >98%

Processing did not affect milk or milk component yields

What does this mean?

- With moderate starch diets (~25% of DM), there appears to be little effect for the method of barley grain processing
- Questions still remain for:
 - Situations where dietary starch is greater
 - Situations with a change in dietary starch
 - Cows that transition from close-up to fresh or lactating diets

Acknowledgements

Sask

Through the SaskMilk/USASK quota agreement, every 1\$ from SaskMilk resulted in \$22 of funding!