

Transient low feed intake: a major risk factor for ruminal acidosis

Greg Penner, PhD Associate Professor and Centennial Enhancement Chair in Ruminant Nutritional Physiology University of Saskatchewan

Removal of acid from the rumen

Acid removal from the rumen

Allen, 1997

Where does most of the bicarbonate entering the rumen come from?

- a) Saliva
- b) Rumen tissue
- c) Diet

Contributions to ruminal bicarbonate

Selected functions of the gut

- Absorptive and secretory
 - Feed digestion and passage
 - Regulates luminal pH
 - Nutrient absorption
 - Urea recycling
- Barrier
 - First arm of the immune response
 - Prevents pathogen and antigen translocation
 - Intrinsic, extrinsic, immunological (Jutfelt, 2011)
- Communicative
 - Facilitates cross-talk between host and microbiota
 - Nutrient sensing and signaling

Voluntary feed withdrawal in transition dairy cattle

- Average depression in DMI = 33%
- 88% of reduction in last week before calving Hayirli et al., 2002; JDS

Health disorders and the impact on DMI

Health disorder	Initial effect ^b (kg DM)	Total effect ^c (kg DM)	P value ^d
	(kg DWI)	(kg DWI)	
Difficult calving	2.5	37.0	0.001
Very difficult calving	3.5	43.4	0.001
Twin calving	2.3	13.4	0.001
Retained placenta	0.8	10.4	0.001
Milk fever	14.7	38.2	0.001
Udder oedema	0.6	15.5	0.001
Puerperal metritis	5.1	46.8	0.001
Chronic metritis	2.6	18.2	0.001
Ketosis	7.5	71.9	0.001
1st recurrence	11.3	64.9	0.001
Teat injury	0.0	5.1	0.078
Systemic mastitis	6.7	30.2	0.001
1st recurrence	0.6	48.4	0.001
Local mastitis	1.6	1.6	0.024
1st recurrence	1.2	11.4	0.001
Diarrhoea	7.8	36.9	0.001
1st recurrence	11.1	34.4	0.001
Other digestive disorder	7.4	24.8	0.001
1st recurrence	6.7	12.3	0.001
Hock lesions	2.7	48.1	0.001
1st recurrence	5.6	46.1	0.001
Foot lesions	6.4	27.8	0.001

	18 cannu	ılated	Angus	heifers
--	----------	--------	-------	---------

- 3 treatments
 - 75% of feed ad libitum
 - 50% of feed ad libitum
 - 25% of feed ad libitum
- 5 periods

Ingredient, % of DM	
Barley silage	30
Grass-Alfalfa hay	30
Barley grain (rolled)	32
Pellet	8
Nutrient composition	
DM,%	65.8 ± 1.9
OM,% of DM	92.3 ± 1.2
CP,% of DM	11.2 ± 0.4
Fat, % of DM	1.8 ± 0.0
NDF,% of DM	40.1 ± 0.4

www.usask.ca

Zhang et al., 2013; JAS

Low feed intake decreases ruminal SCFA concentration

www.usask.ca

Zhang et al., 2013

Ruminal pH increases with low feed intake

www.usask.ca

Zhang et al., 2013

SCFA absorption is reduced with low feed intake

Barrier function of the gut is reduced with severe low feed intake (d 3 and 4)

Severity of low feed intake impacts the recovery response

Gradual increases in DMI after low feed intake induces ruminal acidosis – even with a 'safe' diet

Zhang et al., 2013; JAS

Delayed response for recovery of SCFA absorption with low feed intake

Total tract barrier function was still compromised 3 wk after severe low feed intake

Intestinal effects with low feed intake

www.usask.ca

Kvidera et al., 2017; JDS

Short-term feed inaccessibility

Can we mitigate the response by changing the forage-to-concentrate ratio?

- Animals and Experimental Design
- 20 cannulated Angus heifers
 - 4 treatments
 - High forage/High forage
 - High forage/Moderate forage
 - Moderate forage/High forage
 - Moderate forage/Moderate forage

Albornoz et al., 2013

Role of forage in recovery after low feed intake

	Treatment ¹	
	HF	MF
Ingredient, % of DM		
Grass hay	46	30
Barley silage	46	30
Barley grain	0	32
Pellet ²	8	8
Chemical composition, 3 g/kg ± SD		
DM	584 ± 69.7	557 ± 47.3
OM	907 ± 2.3	925 ± 1.9
CP	107 ± 5.7	111 ± 5.4
Crude fat	21 ± 0.4	19 ± 0.7
NDF	527 ± 4.6	405 ± 1.4
ADF	291 ± 5.4	209 ± 4.5
NEm, ⁴ MJ/kg	4.61	6.09
NEg, ⁴ MJ/kg	2.03	2.21

Albornoz et al., 2013; JAS

Low feed intake decreases SCFA absorption

Feeding a high forage diet improves recovery

Conclusions

- Low feed intake is an under-appreciated challenge
- GIT responds to low feed intake
 - Nutrient absorption reduced
 - Risk for ruminal acidosis increases!
 - Barrier function of the gut reduced
 - Increased risk for inflammation
- Little is known regarding factors that promote recovery

Questions

ALMA
Alberta Livestock
and Meat Agency Ltd.

BEEF CATTLE RESEARCH COUNCIL

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

www.usask.ca