

North American Alfalfa Breeding Programs

• Canada

- AAFC Lethbridge and Ste-Foy
- University of Guelph genetics

• U.S.

- Private companies
 - Largest breeding effort
- Universities and USDA
- Private, non-profit Noble Foundation

Improvements from "Conventional" Alfalfa Breeding Programs

- New varieties of all dormancy classes
- Multiple disease resistance
- Grazing tolerance
- Leafhopper resistance
- Slightly lower fiber content
- Increased forage yield
- Improved winter hardiness
- Salt tolerance

– Release of AC Bridgeview (2010)

- The most important alfalfa breeding and research program in Canada
 - A team of scientists breeder, physiologists, animal nutritionist, molecular geneticist
- Persistence and winter survival
 - Selection for cold tolerance in laboratory
 - Selection for disease resistance
 - Selection for persistence in the field
 - Selection based on molecular markers related to cold tolerance.

Canadian Alfalfa Breeding Programs: Ste-Foy

• Improved forage quality

- Increase total non structural carbohydrate (sugar+starch)
 - Increase energy, digestibility
 - Population with higher TNC produced and will continue selection
- Increase bypass protein
 - Improve protein utilization

Roundup Ready[®] Alfalfa in the U.S. • Planted in U.S. in fall, 2005 and spring and fall, 2006

- 2.5 million lbs seed planted in 2006
 - 5% of total U.S. market
 - 50% of market in Kansas
- Were predicting 20-25% of market in 2008
- \$125-\$150 technology use fee per 50lb bag
- Varieties available in fall dormancies 3-8

Roundup Ready[®] Alfalfa in the U.S.

- APHIS provided provisions for RR alfalfa already planted
 - Procedures for cleaning forage and seed harvesting equipment used for RR alfalfa
 - Provisions for segregating and labelling RR hay and seed
- APHIS prepared Environmental Impact Statement and released final version in late 2010
- RR Ready alfalfa re-granted non-regulated status in Feb, 2011
 - Plantings resumed in spring, 2011

- Meadow bromegrass
- Hybrid bromegrass
- Crested wheatgrass
- Orchardgrass
- Timothy

Smooth bromegrass (Bromus inermis)

Hybrid bromegrass breeding (Saskatoon)

- Meadow X smooth bromegrass hybrid populations
 - Original crosses made in late 1970s
- Dual purpose type of grass
 - High first cut yield like smooth
 - Fast regrowth like meadow brome

Hybrid bromegrass (*B. riparius X B. inermis*)

Characteristics of hybrid bromegrasses

- Are hybrid populations, not hybrid cultivars – Seed production is same as for parental species
- Intermediate to the parental species in many characteristics
- Chromosome numbers variable most 56, some plants 62 or 63
- Good hay production and regrowth
- Pubescent leaves and stems like meadow brome
- Reduced creeping habit like meadow brome

Hybrid bromegrass cultivars

- AC Knowles (2000)
 - More "meadow brome" like in appearance
- AC Success (2003)
 - More "smooth-brome like" in appearance
- S9478 (under development)
 - New population bred for wider adaptation

Crested wheatgrass breeding at Saskatoon

- Agropyron cristatum
 - Most common type
 - 2X, 4X

Crested wheatgrass breeding at Saskatoon

- Release of AC Goliath in 2001
 - Tetraploid Agropyron cristatum
 - Tall, large seeded, narrow crowned
 - High yields in regional trials
- Release of Newkirk in 2010
 - Tetraploid A. cristatum
 - Not as tall as Goliath but high yields

Timothy breeding at Saskatoon

- Use in western Canada was increasing for compressed hay prior to 2005
 - High Canadian dollar reduced production
- Several high yielding lines were selected for compressed hay market
 - Disease resistant
 - Early cultivars for irrigation
 - Late cultivars for dryland

Summary and what is the future of forage crop breeding in Canada

- There are presently four tame forage breeding programs releasing new varieties on a regular basis
 - Main focus is feed for livestock production
- Future goals may include selection for biomass/energy production

Summary and what is the future of forage crop breeding in Canada

- New developments such as lower lignin and condensed tannins show promise for improving the forage quality of alfalfa
 - involve transgenic (GMO) technologies