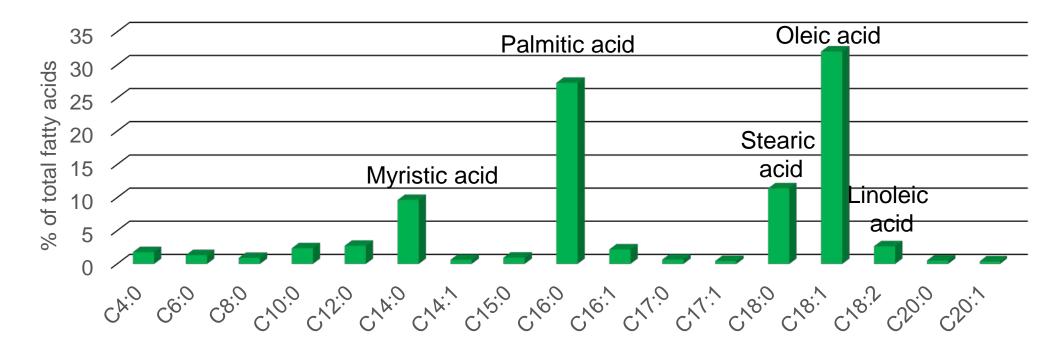
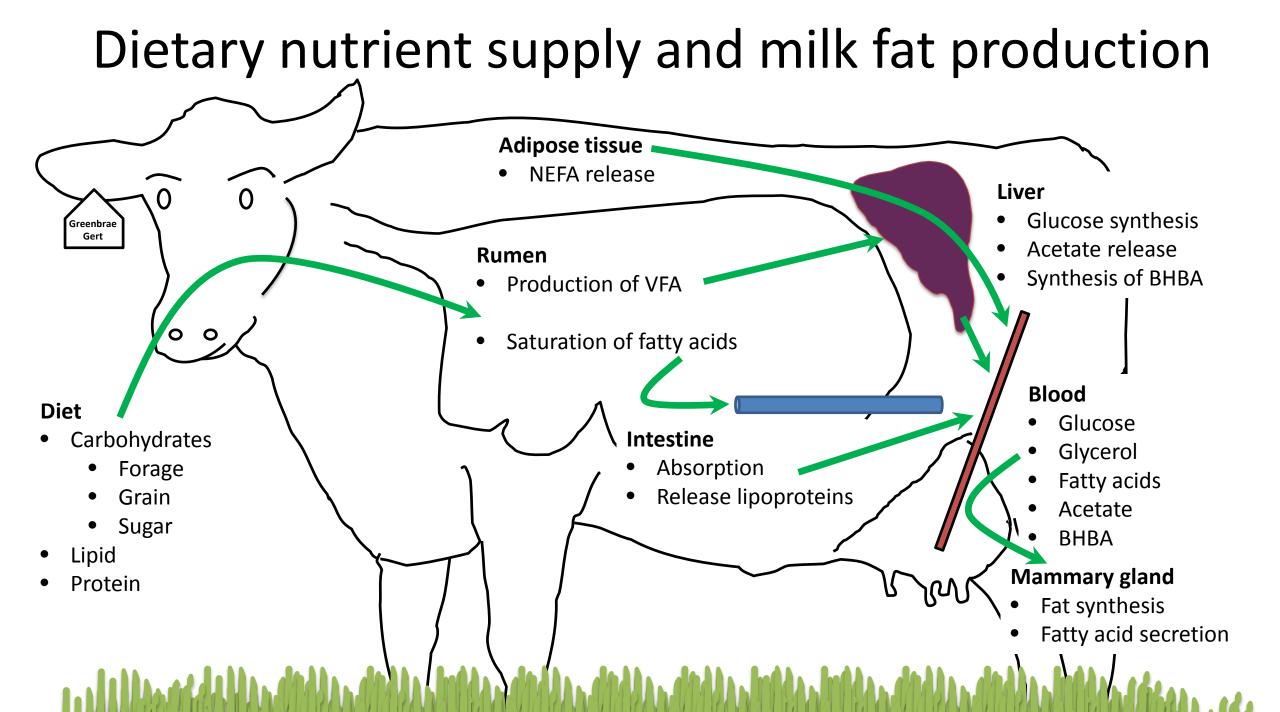


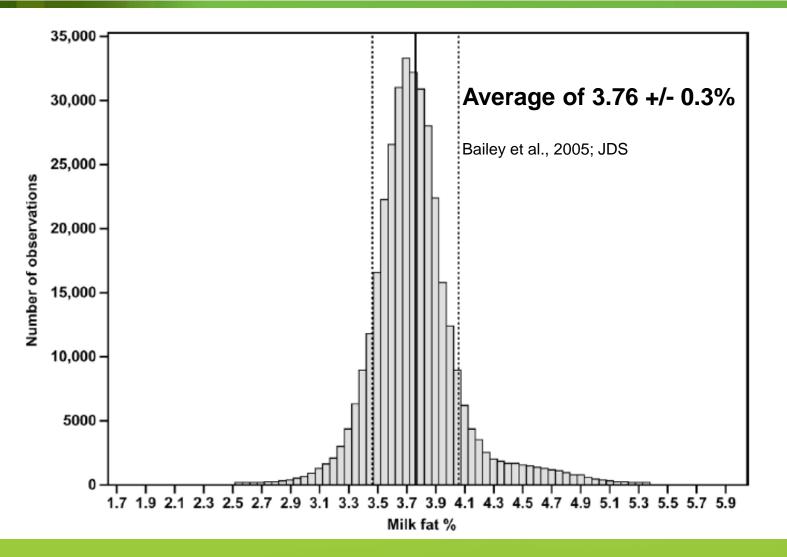
Maximizing milk fat yield: A review


Greg Penner, PhD Associate Professor and Centennial Enhancement Chair in Ruminant Nutritional Physiology Room: AGRIC 6D18 Phone: 966-4219 Email: <u>greg.penner@usask.ca</u>



Milk fat composition

- One of the most diverse naturally occurring source of fat
 - Over 400 individual fatty acids have been identified

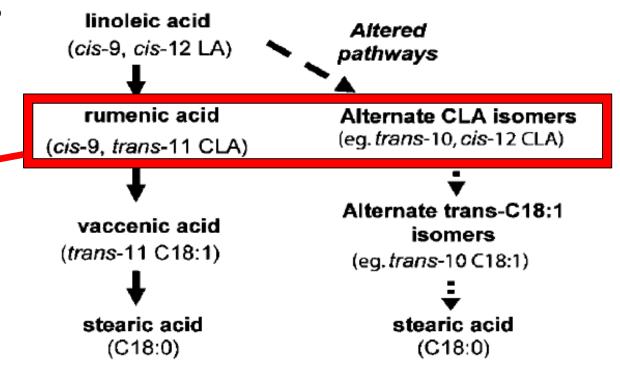


Milk fat

- Derived from 2 major sources
 - 1. Synthesized by the mammary gland (~50%)
 - Primarily short-to-medium chain fatty acids
 - Highly regulated
 - 2. Transfer from the diet/adipose tissue (~ 50%)
- Secreted into the milk as globules
 - Lipid rich with protein-rich membrane

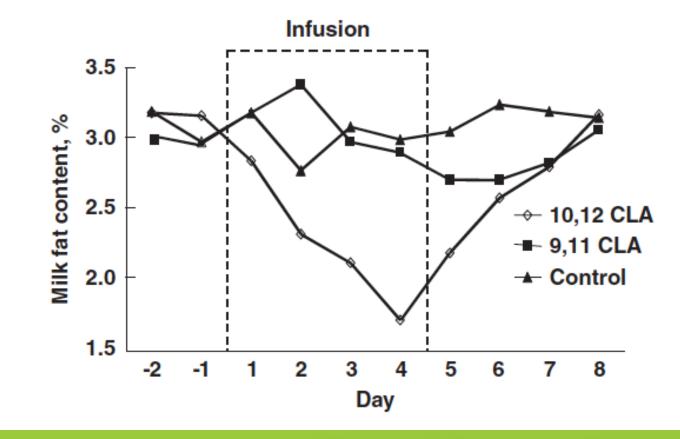
Maximizing milk fat production

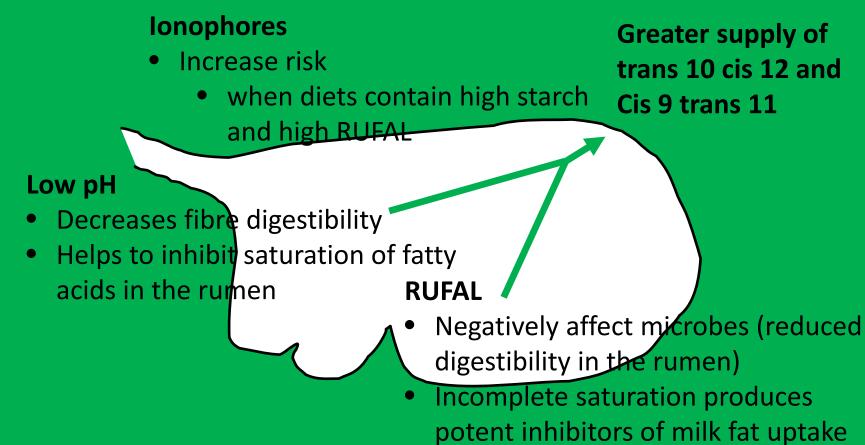
- Strategic approach
 - 1. Limit risk for milk fat depression (MFD)
 - Optimize DMI and rumen fermentation
 - 2. Provision of protected fatty acid supplements


1. Optimizing ruminal fermentation: key points

- What we want
 - High intake
 - High digestibility
 - VFA, microbial protein
- What we need to avoid
 - Low pH
 - High load of RUFAL

Milk fat depression (MFD) / low milk fat production


- Extent reduction in milk fat varies
- Bacteria saturate fatty acids
- Incomplete saturation
 - Cis 9 trans 11
 - Trans 10 cis 12


Harvatine et al., 2009

Trans 10 cis 12 is most potent at reducing milk fat

Harvatine et al., 2009

and synthesis

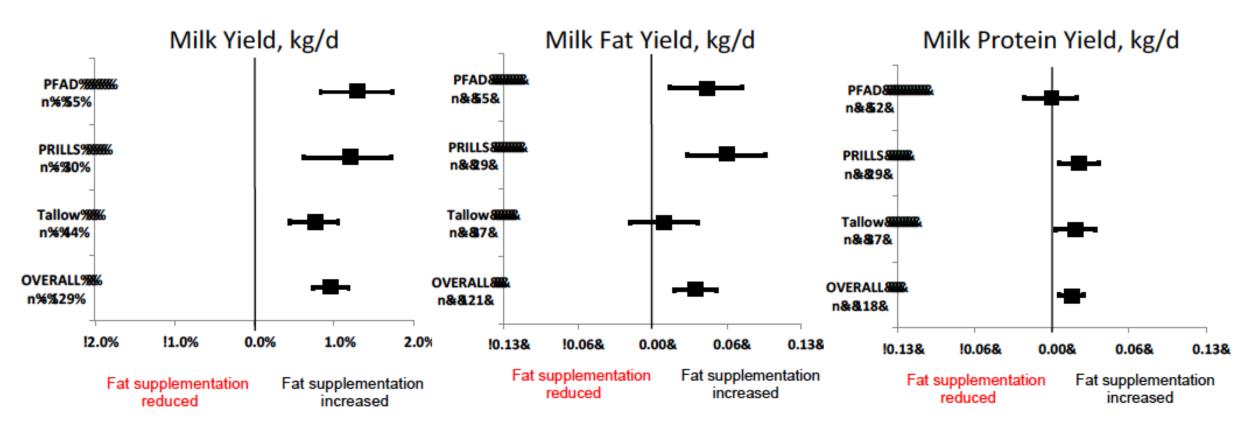
Preventing low pH

- Many dietary combinations and permeations
 - Forage
 - Type of starch and degree of processing
 - Starch vs. sugar
- Feeding management
 - TMR, PMR, component feeding
 - Bunk space
 - Continuous access to feed

What is RUFAL?

- Calculated as the sum of dietary C18:1, C18:2, C18:3
 - Should target <3.5% of the total dietary fatty acids
 - **DOES NOT CONSIDER** whether fatty acids are protected
 - Tool not guideline

Common fatty acid supplements


Fatty Acid, g/100 g	Tallow	Ca-salt PFAD	Saturated free FA	C16:0- enriched
C14:0	3.0	2.0	2.7	1.6
C16:0	24.4	51.0	36.9	89.7
C18:0	17.9	4.0	45.8	1.0
C18:1	41.6	36.0	4.2	5.9
C18:2	1.1	7.0	0.4	1.3

Lock and de Souza, 2015

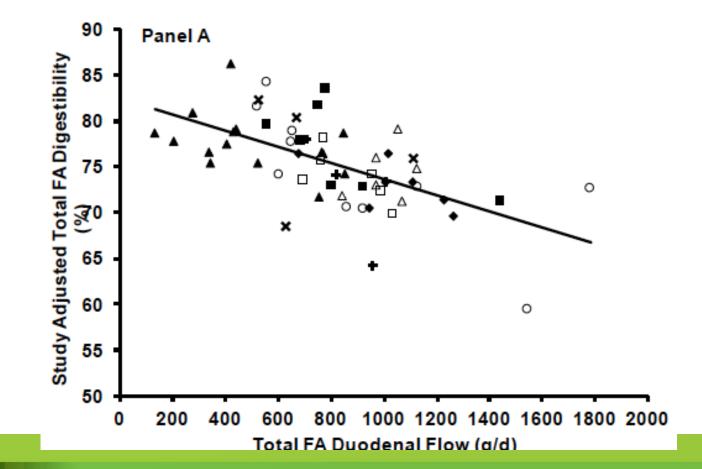
2. Dietary fatty acid supplements

Lock and de Souza, 2015

Dietary palmitic acid as a supplement Rico et al., 2013; JDS

	C16:0 supplementation, % diet DM				_	
Variable	0%	0.75%	1.50%	2.25%	SEM	P-value
DMI, kg/d	28.8	28.8	28.6	27.4	0.83	0.05
Milk vield, ka/d	43.7	43.5	44.5	42.5	1.73	0.06
Fat yield, kg/d	1.63	1.69	1.78	1.70	0.09	0.01
Milk Fat, %	3.78	3.88	<mark>4.01</mark>	4.03	0.17	0.01
Protein yield, kg/d	1.36	1.36	1.40	1.32	0.06	80.0
Milk Protein, %	3.17	3.15	3.18	3.16	0.07	0.32
3.5% FCM, kg/d	45.3	46.1	48.0	45.9	1.91	0.02
3.5% FCM/DMI	1.57	1.60	1.68	1.68	0.07	0.21
Body weight, kg	703	705	701	701	25.7	0.76
BCS	2.66	2.48	2.71	2.84	0.05	0.94

Does it pay?


Values based on Rico et al., 2013; JDS

• \$2100/Mt for palmitic acid (~90% palmitic acid)

 \$18/kg milk fat 		[Dietary inclu	usion rate, ^o	%
		0	0.75	1.5	2.25
	Palmitic amount, kg/d	0	0.21	0.42	0.63
	Palmitic cost, \$/cow/d	0	0.44	0.88	1.32
	Milk fat yield, kg/d	1.63	1.69	1.78	1.70
	Milk fat revenue, \$/cow/d	29.34	30.42	32.04	30.60
	Difference relative to control, \$	0	1.08	2.7	1.26
		•			
	Net benefit/cost	0	0.64	1.82	-0.06
				WW	w.usask.ca

Why doesn't more = better

Lock and de Souza, 2015

But, digestibility of fatty acids differ

Digestibility of C18:0 (stearic) Panel B y = 90.32 - 0.026xR² = 0.51 Total FA Digestibility (%) Total FA Digestibility (%) y = 88.35 - 0.01x $R^2 = 0.48$ Digestibility of C16:0 (palmitic) Total FA intake (g/d) Total FA Intake (g/d)

www.usask.ca

Lock and de Souza, 2015

It is more than just the diet!

It is more than just the diet!

		Milk s lb/	Fat, %		
Category ¹	n	Mean	SD	Mean	SD
<50,000 50,001 to 100,000 100,001 to 500,000 >500,000	$112,534 \\ 110,766 \\ 121,001 \\ 12,021$	31,172 72,006 190,090 1,090,598	$11,609 \\ 14,115 \\ 87,858 \\ 1,220,788$	3.83 3.75 3.72 3.61	0.38 0.31 0.27 0.23

¹Categorized by pounds of milk shipped per month.

Where to go from here?

- There may be the potential to identify individual fatty acids with a high digestibility and transfer efficiency
 - Lower rate of decline in digestibility with increasing dietary supply
 - Adequate transfer from diet to milk
- Locally abundant sources of C14:0, C16:0, and C18:0?
- Evaluation of methods of rumen protection

Take-home messages

- Many factors contribute to milk fat production
- Nutritional strategies must take a 2-pronged approach
 - Optimize ruminal fermentation to limit MFD
 - Supplement with rumen inert fatty acids
- Cost/benefit must be evaluated!

