

Effect of Digestible Fibre Content of Barley Silage on Feed Intake and Milk Production of Lactating Dairy Cows in Comparison with Corn Silage

Basim Refat, MSc PhD candidate University of Saskatchewan

Ministry of Agriculture Strategic Feed Research Chair Program: Feeds Research & Development

Feed Research Funding Support:

- Sask. Ministry of Agriculture Strategic Research Chair (Dr. Yu): Feed <u>Research & Development</u>
- ADF fund-2014-0281
- SaskMilk
- WGRF fund-PROJ344546
- Sask Forage Network (SNK)

Research Background

Maximizing Dry Matter Intake (DMI) + Milk yield + Energy demands during early lactation

Forage Quality

- Lower indigestible fiber content (Lignin)
- Greater rate and extent of digestion.

Dry matter intak (DMI) can be predicted based on the dietary fibre content (NDF%) of forage, as there is a negative relationship between DMI and fibre content (NDF%)

Adapted from Cumberland Valley Analytical Service

- In vitro Evaluation of Fiber Digestibility (IVFD):
 - Is the most popular method in use today to evaluate forage digestibility
 - Relative ranking by NDFD
 - Allocation of forages to cow

groups

Adjust forage energy values

Effects of feeding forages with higher in vitro fiber digestibly on milk production have been extensively investigated for corn silage.

Contrarily, impacts of in vitro fiber digestibly on animal performance had not been extensively studied for barley silage.

Whole-crop barley silage (Hordeum vulgare)

			\square				
% NDF	Conlon	CDC Copeland	CDC Cowboy	Falcon	Legacy	AC Metcalfe	Xena
30h NDFD	30.5bc	31.1b	37.0 a	31.6 b	27.6d	30.8b	28.8cd

Data form Dr McKinnon pro ect

Objectives

To compare barley silages with highest, intermediate and lowest digestible fiber (NDFD) with corn silage variety (P7213R; identified as best corn variety in Dr Yu previous feed corn research)

Dairy production performance

- Feeding Behavior
- Total tract digestibility

Experimental design

Four multiparous Holstein cows were used in a 4×4 Latin square design

BW = 703 ±78 kg

■DIM = 101 ± 25

Cows were fed diets that contained

49% barley-based concentrate + 51% forage (DM basis)

Rayner Dairy Research and Teaching Facility

Experimental treatments

- Forage consisted of <u>10% alfalfa hay</u> and <u>41% silage</u>
 - The four whole plant silage treatments consisted of:
 - T1 = corn silage (P7213R),
 - T2 = CDC Cowboy barley silage,
 - T3 = CDC Copeland barley silage,

Barley

based concen

trate,

49%

forage

. 51 %

T4 = Xena barley silage.

Experimental measurements

Feed intake

Body weight change

Milk yield & composition

Feeding behavior

Total tract nutrient digestibility

Results

Final body weight & Body Weight gain

	T1 Corn 7213R	T2 CDC Cowboy	T3 CDC Copeland	T4 Xena	sig
Final Body weight (BW)	699	705	706	699	NS
WG (kg/cow/d)	+0.44	+0.29	+0.35	+0.08	NS

Dry Matter Intake Kg/d

Milk yield kg/cow/d

Feed Efficiency (Ratio of ECM yield to DM intake)

Milk components (yield kg/cow/d)

Kg/d	Corn 7213R	CDC Cowboy	CDC Copeland	Xena	Sig
Protein	1.17*	1.02	1.06	1.02	0.06
Fat	1.51	1.33	1.35	1.36	0.35
Other solids	2.22*	1.85	2.00	1.90	0.02

Total tract nutrients digestibility

DM digestibility : NS
CP digestibility : NS

%DM	Corn 7213R	CDC Cowboy	CDC Copeland	Xena	Sig
NDF	50.9 <mark>b</mark>	52.1 b	59.0 a	46.9 c	*

Feeding Behavior

No significant effect on Feeding Behavior

Eating time (min/d)

Ruminating time (min/d)

Total chewing activity (min/d)

Implications

Feeding barley silage with higher in vitro NDF digestibility does not necessarily correspond with greater in dairy cow performance and or feeding behavior

New corn variety silage 7213R has potential to produce more milk and greater feed efficiency compared with barley silage

Upcoming feed study

Dairy Performance trails with feeding silage with much greater in vitro NDF/DM digestibility through adding feed additive to see whether it correspond with greater dairy cow performance

Acknowledgment

Supervisor: Dr. Peiqiang Yu

Committee Members:

- Dr. David Christensen
- Dr. John McKinnon
- Dr. Wenzhu Yang (AAFC Scientist)
- Dr. Biligetu
- Dr. Tim Mutsvangwa (chair)

Correlation between Milk yield and <u>48h-IVDMD</u> of silage

Y(Milk Yield)=-35.9157 + IVDM48h*1.0996 (*P*= 0.0020)

Physical effective fiber for TMR

Chemical Composition of Silage (g/kg DM)

	Corn 7213R	CDC Cowboy	CDC Copeland	Xena
Ingredient				
DM	320.5	308.6	301.6	308.4
Ash	52.5	74.3	62.9	67.9
Starch	283.7	86.9	151.8	140.4
СР	87.9	108.4	114.4	111.6
NDF	377.5	523.7	475.2	472.5
ADF	240.6	339.0	309.8	289.8

Experimental design

Barley forage varieties were seeded in mid of May 2104 and harvest in end of July 2014 when plant reached mid-dough stage

Corn forage (Pioneer 7213R) was seeded in mid of May and harvested in end of September 2014 when plant reached to CHU 2100

Weighted of milk Components + \$\$\$

Milk Composition

	Corn 7213R	CDC Cowboy	CDC Copeland	Xena	Sig
Fat (%)	3.46	3.70	3.71	3.89	NS
Protein (%)	2.91	2.89	2.93	2.93	NS
Solids-not-fat %	8.31	8.26	8.35	8.35	NS
MUN (mmol/L)	12.69	12.83	13.03	12.95	NS