

Mycotoxins in Dairy Cattle and Potential for Carry-Over into Dairy Products

Natacha S. Hogan

Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK Toxicology Centre, University of Saskatchewan, Saskatoon, SK

Mycotoxins in Feed

 Contamination of feedstuffs with mycotoxins is increasing in Canada and worldwide

CONSEQUENCES

1. Significant economic losses in animal husbandry

2. Trade barriers for raw materials and food products

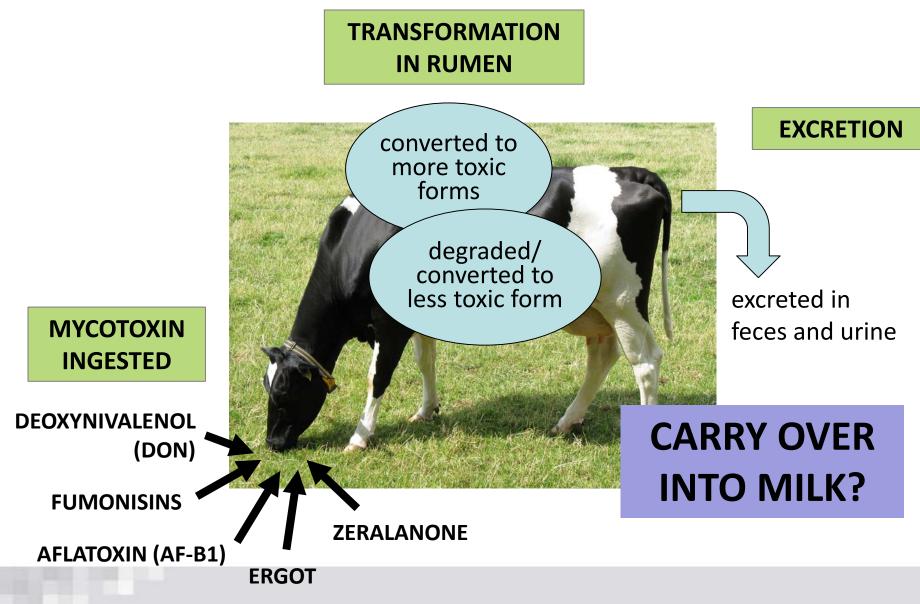
Mycotoxins in Dairy Feed

- Ruminant diet is unique from monogastrics
 - diverse components that opens the animal to possible co-exposure to mycotoxins

Diet Component	Mycotoxins
Concentrates	Aflatoxins, fumonisins, zearalenone, DON, ergot alkaloids
Pasture grasses	Ergot alkaloids, trichothecenes
Silage	Storage (post-harvest) mycotoxins

Mycotoxicosis in Dairy Cows

- Reduced milk production
- Temperature intolerance
- Peripheral gangrene
- Reduced feed intake
- Altered nutrient absorption in the intestine
- Diarrhea
- Mastitis and laminitis
- Reproductive issues


Mycotoxin Absorption in Dairy Cows

- Ruminants have greater tolerance to feed contaminated with mycotoxins
- Largely due to the ability of the ruminal microflora to degrade mycotoxins to less toxic forms

...this does not apply, to all mycotoxins that contaminate feed materials

Concern for mycotoxin carry-over

- Began in the 1960s, with the 1st reported cases aflatoxin contamination
- Feed contamination high, milk production low, analytical method poorly developed
- Cow milk is the main milk type used for human consumption = 83 % of world milk production
 - buffalo milk = 13%
 - goat milk = 2%
 - sheep milk = 1%
 - camel milk = 0.3%

Tolerable daily intake (TDI) of the main mycotoxins encountered in foods

Mycotoxin	TDI (µg/kg BW)
Deoxynivalenol (DON)	1
T2-toxin and HT-2	0.060
Aflatoxin B1 (AFB1)	NA
Aflatoxin M1 (AFM1)	0.002
Zearalenone (ZEN)	0.25
Ochratoxin A (OTA)	0.017
Fumonisin B (FB)	2
T-2 and H-T2	0.1

Benkerroum, N. Mycotoxins in dairy products: A review. International Dairy Journal 62 (2016): 63-75.

Aflatoxin

Max tolerated levels for feed in
lactating dairy animals in Canada20 ug/kg

- Most intensively studied carcinogenic potential and carry-over
- AF levels in milk = approx. 1.7 % of AF in diets
- Most countries have **legislated max tolerated levels** of AF-M1 in dairy products:
 - 0.5 ppb (ug/kg) US FDA, Canada
 - 0.05 ppb Europe and some other countries

Does the current legislation on AF in feed for lactating animals enough to keep AF-M1 in milk below limits?

Deoxynivalenol

Max tolerated levels for feed in
lactating dairy animals in Canada1 mg/kg

- One of the most commonly detected mycotoxins in feed
- metabolised in rumen → less toxic metabolite DOM that is eliminated in urine, milk and feces
- ~0.001 % estimated carry-over rate of DON/DOM to milk
- Few reports of the natural occurrence of DON/DOM in milk samples for human consumption

Zeralenone

Recommended levels for feed in lactating dairy animals in Canada 10 mg/kg

- Metabolism occurs in rumen → zeranol (more estrogenic but poorly absorbed)
- 0.06–0.08% estimated carry-over rate to milk
- Reports of measurements in milk but levels very low and often below limit of detection

Fumonisins

Recommended levels for feed in lactating dairy animals in US

30 mg/kg

- Not metabolised by rumen microbes
- Accesses the liver
- 0 0.05% estimated carry-over rate to milk
- Levels in milk have been previously reported but inconsistent
- Not extensively studied
- Stable to heat treatments such as pasteurization

T-2/HT-2

Recommended levels of HT-2 for
feed of dairy cattle in Canada0.025 mg/kg

- Some of the most toxic trichothecenes detected in feeds
- Ruminants an rapidly convert T-2 toxin to HT-2 toxin
- Excreted via bile and feces
- 0.05% 2% carry-over rates to milk
- No reports in the literature describing the natural occurrence of T-2/HT-2 in milk samples intended for human consumption

Ergot alkaloids

Recommended levels for feed of	2-3 mg/kg
cattle in Canada	

- Metabolised by the liver
- Excreted via bile and feces
- Not typically excreted in the milk of dairy cattle
- Alkaloid exposure of 3 ppb BW over a period of 5 weeks did not cause any detectable amounts of ergot alkaloids in the milk
- No reports in the literature describing the natural occurrence of ergot alkaloids in milk samples intended for human consumption

Uncertainties in exposure and carry-over of mycotoxins in milk

- 1. Ability of mycotoxins to modify rumen microflora
- 2. Interactive effects of mycotoxin mixtures
- Immune effects of mycotoxins → affect absorptive and barrier functions in the animal

