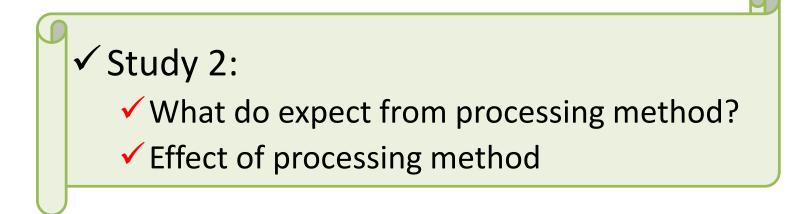


Effect of oat type (feed-type vs. milling type) and processing method on true nutrient supply to dairy cattle


7th Annual Dairy Info Day 25 January 2018

L.L. Prates and Peiqiang Yu

¹ Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada

INTRODUCTION

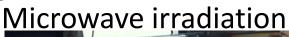
Study 1: Why do use oat as animal feed? Effect of oat type

Why do use oats as animal

feed?

- Oat (Avena sativa L.):
 - Used as human food:
 - Positive health benefits;
 - Introduced as animal feed:

- Its relative **low price** and improved nutritional value of new varieties:
 - Development of new oat varieties:
 - CDC Nasser: lower content of lignin in the hulls, higher fat content.


CDC Seabiscuit: higher yield and lower fat content

What does expect from processing method?

- Heat processing:
 - May show controversial results, because heat procedures are not often optimal;
- Dry heating:
 - The most common heating process;
 - Can overheat the surface of the grain and undercook the inner layer.
- Alternative heat processing:

Autoclave heating

• Study 1:

-To evaluate

- Chemical profile, energy values and nutrient value
 - -CDC Nasser and CDC Seabiscuit in comparison with barley grain (CDC Meredith). OBJECTIVES
- Study 2:
 - -To investigate
 - Effect of heat processing on oat grains;
 - -To compare
 - Different heat processing on oat grains.

 Study was performed at the Department of Animal and Poultry Science, University

of Saskatchewan, Saskatoon, Canada.

• Grains:

Supplied by Crop Development Centre
 (CDC) of U of S;

- From harvested plots grown in 2013, 2014, and 2015;
- Were crashed using Sven roller mill with gap to 1.78 mm

• Study 1:

- Raw barley and oat grains were crashed using Sven roller mill with gap to 1.78 mm;
- An aliquot was ground using Retsch SM 2000 (Retsch, Inc., Newtown, PA) fitted with a 1.0 mm screen for chemical analyses.

The remanding was used for *in situ* trial.

• Study 2:

- Each oat variety was equally divided into 4 portions and each portion was submitted to a different treatment:
 - ✓ Raw;
 - ✓ Dry heating;
 - Autoclave heating;
 - ✓ Microwave irradiation (MIR).
 - Samples were crashed using Sven roller mill with gap to 1.78 mm;
 - Same procedure performed as in Study 1.

- Conventional rumen *in situ* and *in vitro* methods were performed to quantify:
 - **Rumen degradation** and **intestinal digestion** of the nutrients;
- Statistical analysis were considering CRBD design performed using PROC MIXED of SAS 9.4:
 - Fixed effect was feed type (*Study 1*) and heat processing (*Study 2*), and each feed sources were used as replications;
 - Multiple treatment comparisons were performed using the Tukey-Kramar test;

Statistical significance was declared and detected at P < 0.05 while trends were declared at $P \le 0.10$.

SK Ministry of Agriculture Strategic Research Chair Program: Feeds

ltem ¹	Oat varieties ²		Control (barley) ²	CEN 4 ²		Contrast
	CDC Nasser	CDC Seabiscuit	CDC Meredith	SEM ³	P value	oat vs. barley
Chemical profile						
DM _(g/kg)	933.7ª	933.0ª	926.3 ^b	1.14	0.002	<0.001
OM _(g/kg DM)	963.4	966.8	972.3	2.84	0.132	0.070
EE _(g/kg DM)	73.0ª	57.1ª	26.2 ^b	3.35	0.001	<0.001
NDF _(g/kg DM)	277.0ª	286.0ª	175.3 ^b	18.94	0.016	<0.001
ADF _(g/kg DM)	168.7ª	146.3ª	71.7 ^b	10.59	0.001	<0.001
CP _(g/kg DM)	111.3	107.7	114.7	5.23	0.418	0.276
SCP _(g/kg DM)	30.3	28.3	33.3	3.20	0.232	0.129
Energy values						
TDN _{1x (g/kg DM)}	83.27 ^{ab}	80.40 ^b	84.71 ^b	0.864	0.024	0.023
DE _{3X (Mcal/kg DM)}	3.34 ^{ab}	3.23 ^b	3.41 ^a	0.035	0.018	0.017
NE _{L3X (Mcal/kg DM)}	1.90 ^{ab}	1.81 ^b	1.91ª	0.026	0.032	0.069

¹DM: dry matter; OM: organic matter; EE: ether extract; NDF: neutral detergent fibre; ADF: acid detergent fibre; CP: crude protein, SCP: soluble crude protein; TDN_{1x}: total digestible nutrient at maintenance; DE_{3x}: digestible energy for lactation; NE_{13x}: net energy for lactation (NRC, 2001)..

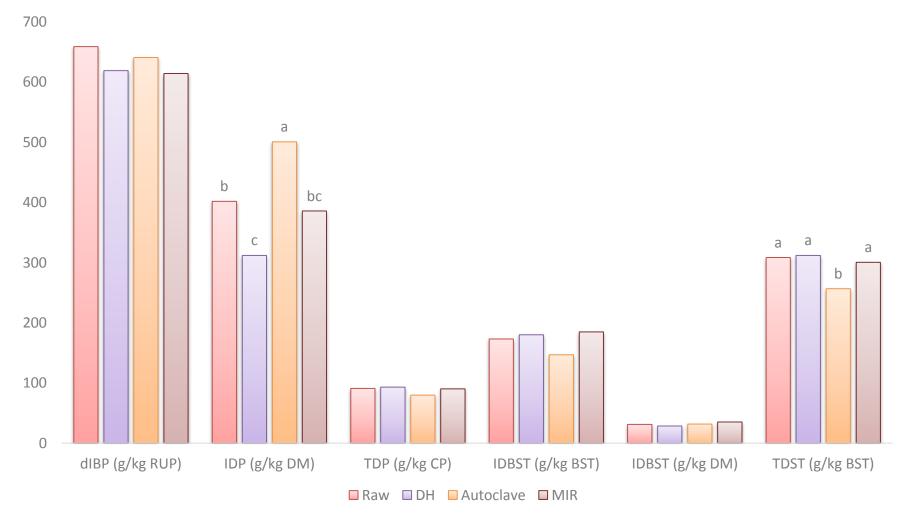
²Means within a row with different letters differ at the P < 0.05 level.

³SEM: standard error of mean.

Intestinal and total crude protein (CP) and Intestinal and total starch (ST) digestion

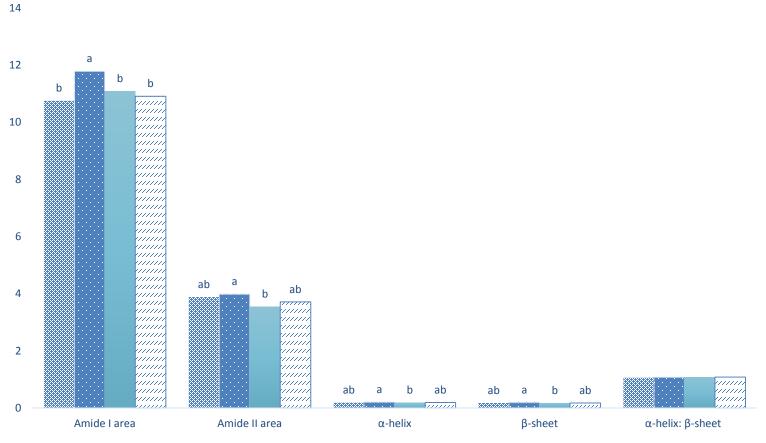
dIDP: intestinal digestibility of bypassed protein; IDP: intestinal digestible of protein on DM basis; TDP: total digestible protein on CP basis; IDBST: intestinal digestible bypassed ST on ST and on DM basis; TDST: total digestible ST on ST basis

Table 2. Effect of heat processing on chemical profile and energy values in comparison of raw (control) in oat grains

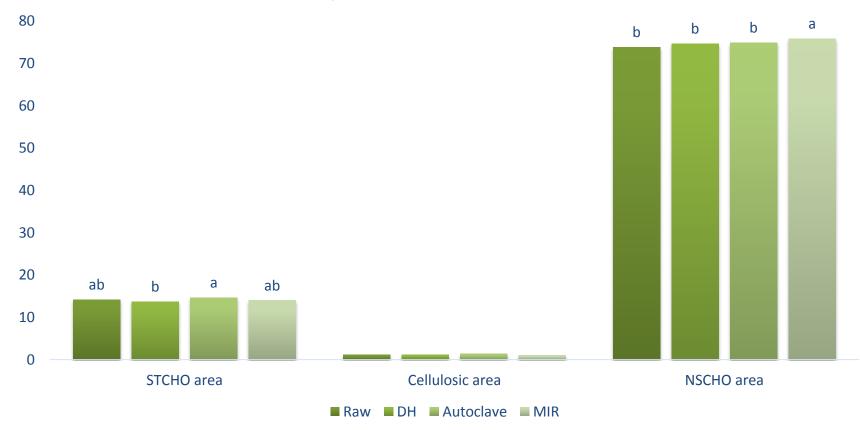

ltem ¹	Control (C) ²	Heat Processing (HP) ²				P-value	
	Raw	Dry Heating	Autoclave Heating	Microwave Irradiation	SEM ²	HP <i>P</i> value	Contrast (C vs. HP)
Chemical profile							
DM _(g/kg)	934.0 ^c	949.7ª	929.0 ^d	946.0 ^b	1.20	<0.001	<0.001
OM _(g/kg DM)	967.6	960.3	965.3	967.0	2.81	0.329	0.338
EE _(g/kg DM)	62.7	55.2	66.6	61.7	2.80	0.107	0.649
CP (g/kg DM)	108.5	110.7	111.7	111.2	7.50	0.314	0.088
SCP (g/kg DM)	27.5 ^{bc}	38.7 ª	23.0 ^c	32.0 ^{ab}	2.53	0.001	0.093
NDF (g/kg DM)	260.2	303.2	271.5	269.7	12.1	0.145	0.167
ADF (g/kg DM)	151.2	154.5	161.5	143.2	4.65	0.119	0.736
Starch (g/kg DM)	460.2	448.7	461.0	457.5	11.6	0.653	0.617
Energy values							
TDN _{1x(g/kg DM)}	827.6	800.1	817.0	823.8	6.21	0.063	0.090
DE _{p3x (Mcal/kg of DM)}	3.32	3.21	3.27	3.31	0.22	0.053	0.087
NE _{L3x (Mcal/kg of DM)}	1.87	1.80	1.84	1.867	0.02	0.069	0.099

¹DM: dry matter; OM: organic matter; EE: ether extract; NDF: neutral detergent fibre; ADF: acid detergent fibre; CP: crude protein, SCP: soluble crude protein.

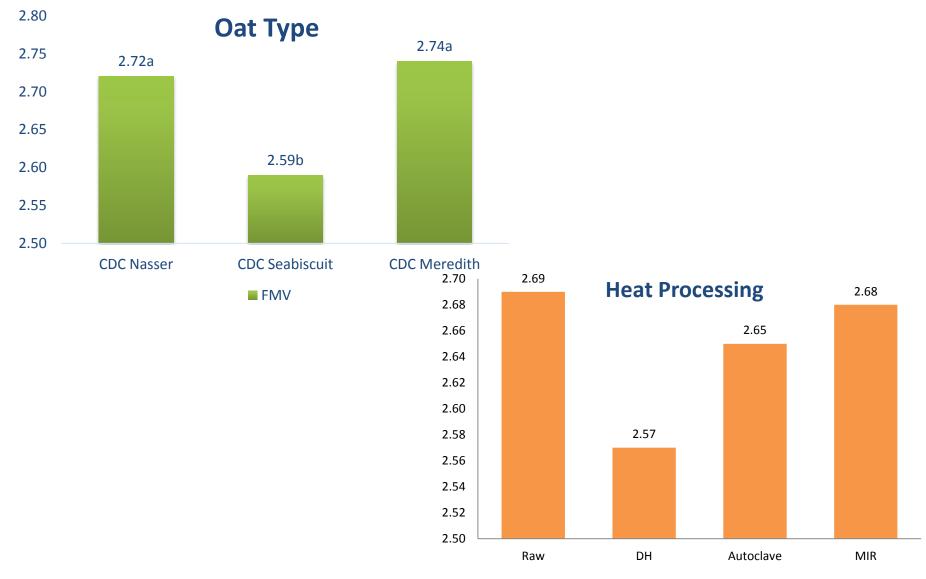
 2 Means within a row with different letters differ at the P < 0.05 level.


³SEM: standard error of mean.

Intestinal and total crude protein (CP) and Intestinal and total starch (ST) digestion


dIDP: intestinal digestibility of bypassed protein; IDP: intestinal digestible of protein on DM basis; TDP: total digestible protein on CP basis; IDBST: intestinal digestible bypassed ST on ST and on DM basis; TDST: total digestible ST on ST basis

Protein Molecular Structure



Carbohydrate molecular structure

Feed milk value (FMV)

- Oat type effect:
 - CDC Nasser (feed oat) might be considered as animal feed due to:
 - ✓Greater energy value;
 - ✓ Intestinal digestion of protein.
 - CDC Seabiscult (milling oat) provides
 Greater total digestion of starch.
- Heat processing effect:
 - Autoclave heating:
 - ✓ May improve the availability of protein to small intestine
 - Dry heating and MIR:
 - ✓ Show greater total digestion of starch

Take Home Messag

- It is important to ensure a balance diet with the addition of new feeds
- Based on the current study feed and milling oat type can be included in rations for dairy cattle
- The inherent molecular structure can be affected by heat processing
- Alterations provide by heat processing in the inherent molecular structure of grains could explain differences in animal performance

ACKNOWLEDGEMENTS

Ministry of Agriculture Strategic Feed Research Chair (Dr. Peiqiang Yu)

Thank you...

Questions???

